Faster Polynomial Multiplication over Finite Fields

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Private Multiplication over Finite Fields

The notion of privacy in the probing model, introduced by Ishai, Sahai, and Wagner in 2003, is nowadays frequently involved to assess the security of circuits manipulating sensitive information. However, provable security in this model still comes at the cost of a significant overhead both in terms of arithmetic complexity and randomness complexity. In this paper, we deal with this issue for ci...

متن کامل

Multiplication of Polynomials over Finite Fields

We prove the 2.5n − o (n ) lower bound on the number of multiplications/divisions required to compute the coefficients of the product of two polynomials of degree n over a finite field by means of straight-line algorithms.

متن کامل

Linearized polynomial maps over finite fields

We consider polynomial maps described by so-called (multivariate) linearized polynomials. These polynomials are defined using a fixed prime power, say q. Linearized polynomials have no mixed terms. Considering invertible polynomial maps without mixed terms over a characteristic zero field, we will only obtain (up to a linear transformation of the variables) triangular maps, which are the most b...

متن کامل

On Sparse Polynomial Interpolation over Finite Fields

We present a Las Vegas algorithm for interpolating a sparse multivariate polynomial over a finite field, represented with a black box. Our algorithm modifies the algorithm of BenOr and Tiwari in 1988 for interpolating polynomials over rings with characteristic zero to characteristic p by doing additional probes. One of the best algorithms for sparse polynomial interpolation over a finite field ...

متن کامل

Univariate Polynomial Factorization Over Finite Fields

This paper shows that a recently proposed approach of D. Q. Wan to bivariate factorization over finite fields, the univariate factoring algorithm of V. Shoup, and the new bound of this paper for the average number of irreducible divisors of polynomials of a given degree over a finite field can be used to design a bivariate factoring algorithm that is polynomial for "almost all" bivariate polyno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the ACM

سال: 2017

ISSN: 0004-5411,1557-735X

DOI: 10.1145/3005344